
Scalable I/O Forwarding Framework for Petascale
Architectures

Nawab Ali∗, Phil Carns†, Kamil Iskra†, Dries Kimpe‡, Sam Lang†, Robert Latham†, Rob Ross†,
Lee Ward§, P. Sadayappan∗
∗The Ohio State University

Email: {alin, saday}@cse.ohio-state.edu
†Argonne National Laboratory

Email: {carns, iskra, slang, robl, rross}@mcs.anl.gov
‡University of Chicago

Email: dkimpe@mcs.anl.gov
§Sandia National Laboratories

Email: lee@sandia.gov

Abstract—Current leadership-class machines suffer from a
significant imbalance between their increasing computational
power and the limited I/O bandwidth. While Moore’s law ensures
that the computational power of high-performance computing
(HPC) systems increases with every generation, the same is not
true for their I/O subsystems. The limited scalability of existing
parallel file systems, coupled with the minimalistic compute
node kernels running on these machines, calls for a new I/O
paradigm to meet the requirements of data-intensive scientific
applications. I/O forwarding is a technique that attempts to
bridge the increasing performance gap between the compute
and I/O components of HPC systems by shipping I/O calls from
compute nodes to dedicated I/O nodes. The I/O nodes perform
I/O on behalf of the compute nodes and can reduce file system
traffic by aggregating, rescheduling, and caching I/O system calls.
This paper presents an open, scalable I/O forwarding framework
capable of running on massively parallel HPC systems such as
the IBM BG/P, Cray XT5, and Linux clusters. We also describe
an I/O protocol and API for shipping function calls from compute
nodes to I/O nodes, and we present a quantitative analysis of the
overhead associated with I/O forwarding.

I. INTRODUCTION

Current leadership-class machines such as the IBM Blue
Gene/P supercomputer at the Argonne National Laboratory [1]
or the Roadrunner machine at the Los Alamos National Lab-
oratory [2] consist of a few hundred thousand processing ele-
ments. Future generations of supercomputers will incorporate
millions of processing elements. This significant increase in
scale is brought about by an addition in the number of nodes,
along with new multicore architectures that can accommodate
an increasing number of processing cores on a single chip.

While the computational power of supercomputers keeps
increasing with every generation, the same is not true for
their I/O subsystems. The data access rates of storage devices
have not kept pace with the exponential growth in micropro-
cessor performance. This situation has adversely affected the
I/O bandwidth-to-flops (floating-point operations per second)

This work was supported by the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract DE-
AC02-06CH11357.

ratio of these systems. While the I/O bandwidth of earlier
supercomputers was around 1 GBps for every Gflop, the I/O
bandwidth-to-flops ratio of current leadership-class machines
is around 100 GBps for 1 Pflop. This significant decrease
in scale in terms of the bytes-to-flops ratio adversely affects
the performance of data-intensive high-end computing appli-
cations, which often do not see a corresponding performance
improvement on faster supercomputers. For leadership-class
machines, I/O is the critical performance bottleneck.

Fig. 1: Typical I/O software stack for HPC systems.

In view of the limitations imposed by current storage
technology, the main challenge facing I/O researchers is to
drive the existing I/O infrastructure at maximum efficiency
while simultaneously scaling to a larger number of processing
elements. Figure 1 shows the I/O software stack available on a
typical high-performance computing (HPC) system. It consists
of serial and parallel high-level I/O libraries, MPI-IO and
POSIX I/O implementations, file system implementations, and
the storage infrastructure. The important question that needs
to be answered is, where in the software stack do we make
improvements so as to have the greatest impact on application
performance?

The parallel file systems available on current leadership-
class machines, such as PVFS2 [3], GPFS [4], Lustre [5],
and PanFS [6] were designed with smaller systems in mind.
While some of these file systems incorporate features for
enhanced scalability, they are essentially hamstrung by the
limited throughput available from storage devices. Moreover,

1

since not all HPC systems use the same parallel file system,
attempting to address this challenge at the file system layer
might prove ineffective. The other option is to make the
scalability improvements at the MPI-IO layer. ROMIO [7] is
the de facto standard MPI-IO implementation from Argonne
National Laboratory. Since it is distributed as part of the
MPI library, it is available on most HPC systems. However,
not all applications use the MPI-IO interface for I/O, so any
improvements made at the MPI-IO layer may not be visible
to the entire spectrum of scientific applications. Parallel high-
level libraries such as Parallel-NetCDF [8] use MPI-IO and,
as such, face many of the same limitations outlined above.
POSIX implementations and serial high-level libraries are an
artifact from an earlier generation and are available on current
HPC systems only to support legacy applications.

Fig. 2: I/O software stack with I/O forwarding.

Current HPC systems typically run a minimalistic operating
system kernel on the compute nodes to limit the operating
system (OS) “noise”. The IBM Blue Gene series of supercom-
puters also restrict I/O operations from the compute nodes to
limit the I/O jitter from kernel-resident file systems. To enable
applications to perform I/O, the compute node kernel forwards
all I/O operations to a dedicated I/O node, which performs I/O
on behalf of the compute nodes. This concept, known as I/O
forwarding, is explained in detail in Section II. As shown in
Figure 2, I/O forwarding introduces a new layer in the I/O
software stack. By bridging the application interface with the
file system interface, the I/O forwarding layer has the potential
to enhance the scalability and performance of I/O subsystems.

In view of the importance of I/O forwarding in HPC
systems, it is desirable to have a high-quality implementation
capable of supporting multiple architectures, file systems,
and high-speed interconnects. While a few I/O forwarding
solutions are available for the IBM Blue Gene platform, they
are tightly coupled to a single architecture [9], [10].

The main contributions of this paper are as follows:
• We present a generic I/O forwarding framework capable

of running on massively parallel leadership-class ma-
chines such as the IBM BG/P, Cray XT5, and Linux
clusters.

• We present a new protocol and API (ZOIDFS) for for-
warding I/O function calls from the compute nodes to the
I/O node.

• We quantify the overheads associated with introducing

the I/O forwarding layer in the I/O stack in relation to
latency and bandwidth.

II. I/O FORWARDING

General-purpose operating systems such as Linux are de-
signed for a multiuser, multiprogramming environment. They
employ mechanisms such as multitasking, process preemption,
and context switching to ensure a low response time for
applications. While these mechanisms fulfill the requirements
of desktop and server environments, they adversely affect
the performance of computation-intensive HPC systems. The
reason is that general-purpose OS kernels introduce significant
levels of noise in the system in the form of context switches,
cache poisoning, translation lookaside buffer (TLB) misses,
and interrupts. These kernels are unable to scale to leadership-
class machines because of the performance impact of the OS
interference on HPC applications, particularly with respect to
synchronicity [11], [12].

To mitigate the levels of noise in OS kernels, massively
parallel machines such as the IBM Blue Gene/P and the
Cray XT5 run customized, stripped-down versions of the OS
kernels on the compute nodes. The Blue Gene/P compute
node kernel (CNK) is a lightweight kernel that minimizes
OS interference by disabling support for multiprocessing and
POSIX I/O system calls [13]. While limiting I/O support
in the CNK may lead to better application performance, it
also restricts the capabilities of parallel applications. In fact,
the inability to perform file I/O may render most scientific
applications useless. There are several ways to circumvent
the I/O restrictions imposed by the CNK. Applications can
use a user-level virtual file system (VFS) such as FUSE [14]
or the SYSIO library [15] to perform file I/O. The SYSIO
library provides POSIX-like file I/O support for remote file
systems. A more interesting approach, which is used by the
Blue Gene architecture, is to forward all I/O requests from
the compute nodes to dedicated I/O nodes. The I/O nodes run
a fully functional OS kernel and perform I/O on behalf of
the compute nodes. This technique, known as I/O forwarding,
enables applications running on the compute nodes to perform
I/O without introducing I/O-specific jitter in the CNK.

I/O forwarding bridges the increasing gap between the
computational power of leadership-class machines and the
limited scalability of parallel file systems. Current file systems
are unable to service the concurrent requests from hundreds
of thousands of processing elements. However, by partitioning
the compute nodes into M subsets, each containing N compute
nodes, and by forwarding the I/O requests from each subset
to a dedicated I/O node, we can reduce by a factor of N the
number of clients accessing the file system. I/O forwarding
also enables us to reduce the file system traffic by aggregating,
rescheduling, and caching the I/O requests at the I/O nodes.
These optimizations are relevant even for architectures that
allow the compute nodes direct access to the file systems,
such as the Cray XT and Linux clusters.

2

III. SCALABLE I/O FORWARDING FRAMEWORK

Figure 3 shows the I/O forwarding infrastructure on the
IBM Blue Gene/P. The set of compute nodes is partitioned
into smaller subsets and assigned to an I/O node. The typical
ratio of I/O nodes to compute nodes varies from 1:8 to 1:64.
The compute nodes are connected to the I/O nodes via a
collective tree network. The I/O nodes are connected to the
file system via a Gigabit Ethernet network. This hierarchical
design enables the system to scale by limiting the number
of clients that can directly access the file system. The CNK
forwards all I/O and socket requests to the I/O node. A
dedicated control and I/O daemon (CIOD) running on the I/O
node performs I/O on behalf of the compute nodes by invoking
the corresponding file system calls.

Fig. 3: I/O forwarding architecture for IBM BG/P.

There are some significant drawbacks associated with the
Blue Gene/P I/O forwarding infrastructure. The CNK supports
only a subset of the POSIX I/O and BSD socket API.
Applications using MPI-IO need to translate the MPI-IO calls
to POSIX I/O, thereby losing the optimizations performed at
the MPI-IO layer, especially with respect to data sieving and
I/O aggregation. Also, the BG/P I/O forwarding infrastructure
is inflexible, proprietary, and tightly coupled to IBM technolo-
gies.

In view of the importance of I/O forwarding in the I/O
stack of leadership-class machines and the suboptimal solu-
tions available today, we propose a scalable, unified, high-
performance computing I/O forwarding framework that will
bridge the increasing performance gap between the compu-
tation power and I/O subsystems of petascale machines. In
particular, this layer will perform the following functions:

• Provide function shipping at the file system interface level
that enables asynchronous coalescing and I/O without
jeopardizing determinism for computation.

• Offload file system functions from simple or full OS
client processes to multiple targets, including another
core or hardware on the same system, an I/O node on
a conventional cluster, or a service node on a leadership-
class system.

• Reduce the number of file system operations or clients
that are visible to the file system.

• Support any or all parallel file system solutions.

• Support any or all high-speed interconnects and network-
ing solutions.

• Integrate with MPI-IO and any hardware features de-
signed to support efficient parallel I/O.

The I/O forwarding framework leverages the work done
on the ZOID and ZOIDFS projects at Argonne National
Laboratory [10]. In particular, we use the ZOIDFS I/O protocol
and API as a starting point for our research. Figure 4 shows
the software stack of the I/O forwarding scalability layer
(IOFSL). It consists of two main components: a ZOIDFS client
library running on the compute nodes and an I/O forwarding
daemon (IOD) running on I/O nodes. The ZOIDFS client
library forwards I/O requests from the compute node kernel to
the IOD. The IOD performs file I/O on behalf of the compute
nodes by executing the corresponding file system calls.

One of the design requirements of the I/O forwarding
framework was to keep the architecture generic. We did
not want to make any assumptions about operating system
kernels, high-speed interconnects, file systems, or machine
architectures that the framework would operate on. We believe
that a framework capable of running on multiple machine
architectures, high-speed interconnects, and file systems has
a higher chance of being adopted by the HPC community. In
view of the above design requirement, we have used multiple
levels of abstractions, at the client, network, and file system
layers.

Fig. 4: I/O forwarding software stack.

The compute node component of the I/O forwarding frame-
work supports multiple operating system kernels, including
IBM Blue Gene/P CNK, Cray XT Compute Node Linux
(CNL), and Linux. To account for possible heterogeneity
between the compute node and I/O node architectures, we
encode the function parameters using XDR [16]. Similarly,
because of the abstraction provided by the SYSIO library,
we support multiple file systems on the I/O nodes, including
PVFS2, Lustre, UFS, and PanFS. The use of BMI [17]
for communication enables the I/O forwarding framework to
use several high-speed interconnects such as InfiniBand [18],
Myrinet, and Gigabit Ethernet.

3

IV. I/O FORWARDING SOFTWARE STACK

This section describes the individual components of the I/O
forwarding software stack. We explain our design choices and
discuss the tradeoffs.

A. ZOIDFS I/O Protocol

The POSIX file I/O protocol inhibits the performance of
file systems in the HPC domain. To avoid the associated
performance overhead, stateless file systems such as PVFS2 do
not maintain POSIX consistency semantics. Also, the POSIX
API is not expressive enough to describe I/O patterns such
as noncontiguous file access, which are often experienced in
high-performance computing environments.

To overcome the limitations of POSIX file I/O, we have
defined a new I/O protocol, called ZOIDFS that is suitable
for the I/O forwarding framework. ZOIDFS is a stateless
protocol. Instead of file descriptors, it uses opaque, 32-byte
file handles to describe the I/O operations. Since the protocol
does not maintain any state at the client or the server end, these
handles can be freely exchanged among the compute nodes.
The ZOIDFS API is flexible and more expressive than POSIX
and requires fewer I/O calls for file operations. For instance,
ZOIDFS has no file open or close calls. Applications perform a
file lookup to obtain the file handle. All subsequent operations
use the file handle to perform I/O.

The ZOIDFS lookup call accepts either a full pathname or a
parent handle and a component name, and the data read/write
calls can operate on multiple memory buffers and multiple
regions of the file within a single call.
int zoidfs_lookup(const zoidfs_handle_t *parent_handle,

const char *component_name,
const char *full_path,
zoidfs_handle_t *handle);

int zoidfs_write(const zoidfs_handle_t *handle,
size_t mem_count,
const void *mem_starts[],
const size_t mem_sizes[],
size_t file_count,
const uint64_t file_starts[],
uint64_t file_sizes[]);

While the ZOIDFS API is feature complete and stable, we
have identified the need to pass hints, along with the API
function calls, to provide contextual information helpful for
optimizations or debugging. Potential parameters that can be
passed as hints include node id, process id, operation id, and
user credentials. For instance, the operation id can identify
individual sub-operations coming from multiple compute pro-
cesses, that form a larger, application wide collective opera-
tion. This information can be helpful to a separate caching
layer running on the I/O forwarding nodes. We are currently
exploring extensions to the ZOIDFS API to include the hints
parameter.

The stateless nature of the ZOIDFS protocol introduces
important security challenges. Typically, POSIX-compliant file
systems match user credentials against file permissions during
file open. Since the ZOIDFS protocol obviates the need for

opening and closing files, this authentication step is essentially
bypassed. Further, since the file handles are opaque entities
and can be exchanged freely among the client processes, the
file authentication process can be easily circumvented.

We are developing a capability-based security model that
will incorporate a capability field in every ZOIDFS function
call. The ZOIDFS server will check a user’s capability before
performing any I/O operation. This approach should augment
the existing security measures in current file systems.

B. ZOIDFS Client Interface

Applications can ship I/O requests to the I/O forwarding
server via multiple client interfaces. The ZOIDFS protocol
provides a native client API for call forwarding. While appli-
cations can use native ZOIDFS calls to perform I/O, this API
was designed primarily for use by higher-level libraries such
as ROMIO [7]. An alternative would be to use userspace VFS
implementations such as FUSE [14] or SYSIO [15] to redirect
POSIX file I/O calls to the ZOIDFS API.

The FUSE kernel module enables us to transparently inter-
cept POSIX file operations without requiring any application
modifications. These operations are subsequently directed to
the ZOIDFS library. Special care has to be taken to match
the stateful API of FUSE with the stateless ZOIDFS API.
We note, however, that although FUSE currently provides the
most transparent and user-friendly option, it might not be the
most efficient choice. Unlike the methods described above—
that handle all I/O in userspace—I/O operations using FUSE
first travel to the kernel, where they are redirected back to
a userspace library. Further testing is needed to determine
whether the overhead incurred by this userspace-to-kernel
roundtrip is acceptable. For now, we expect SYSIO to be
the primary means of redirecting POSIX file I/O calls to the
ZOIDFS API.

The ROMIO driver for ZOIDFS enables parallel applica-
tions to perform I/O call forwarding via the MPI-IO [19] in-
terface. It converts MPI file views and datatypes into offset-list
pairs, thereby delivering good noncontiguous I/O performance.
We can utilize other ROMIO optimizations as well, such as
two-phase collective I/O and data sieving (for reads only, as
writes would require locking). The ZOIDFS driver is currently
available in the MPICH2 subversion trunk.

C. Buffered Message Interface

The Buffered Message Interface (BMI) is a network ab-
straction layer designed for high-performance parallel I/O [17].
BMI enables parallel file systems to operate on multiple inter-
connection networks such as TCP/IP, InfiniBand, and Myrinet.
While message-passing architectures such as Portals [20] and
MPI [21] also provide network abstractions, BMI has inherent
support for parallel I/O communication patterns.

BMI exports two sets of APIs: a user-level API and an
internal device API. The user-level API is used by higher-
level services such as file systems, whereas the device API is
used for specific network implementations. The dual-layered

4

architecture enables BMI to abstract the details of the net-
work from applications while exploiting the high-performance
capabilities of modern interconnects. The BMI API is also
asynchronous, thread-safe, and stateless. File systems can post
and test for multiple I/O operations across several different
networks simultaneously. This forms a basis for a portable,
scalable, and concurrent communication paradigm.

BMI was developed for the PVFS2 parallel file system, and
as such the BMI code is tightly coupled with the PVFS2 source
code. However, since BMI also meets the communication
requirements of the I/O forwarding framework, we decided to
decouple BMI from PVFS2. Currently, BMI can be installed
and used independent of PVFS2.

D. ZOIDFS Server

The ZOIDFS server is a daemon that runs on the I/O
nodes. It receives the encoded I/O requests from the compute
nodes, decodes the requests, and performs I/O on behalf of
the compute nodes. The current implementation uses a pool of
threads to concurrently service requests from multiple clients.

The real advantage of an intermediate server lies in the
potential for performing optimizations at the I/O forwarding
layer. The ZOIDFS server can leverage its knowledge of the
global I/O pattern to potentially reduce file system traffic by
aggregating I/O requests, reordering the I/O queue, performing
I/O pipelining between the compute and I/O nodes and caching
the data and metadata requests. While the existing server re-
plays the I/O requests without any of the above optimizations,
an enhanced server currently in development will incorporate
them.

E. ZOIDFS File System Interface

Once the ZOIDFS server has received and decoded the
I/O requests from the compute nodes, it invokes the corre-
sponding file system calls. Since leadership-class machines
often use different and incompatible parallel file systems
(Lustre, PVFS2, GPFS, etc.), using the API of any specific
file system would result in nonportable code. To achieve
portability across multiple parallel file systems, we have used
the SYSIO [15] library to provide a file system abstraction
layer. The SYSIO library provides applications with a POSIX-
compatible, user-space file I/O API. Its plug-in architecture
allows easy integration with existing file systems.

Mapping the stateless ZOIDFS I/O protocol with stateful
POSIX-compliant file systems introduces significant chal-
lenges. It is fairly straightforward to map a stateless, handle-
based file system such as PVFS2 to the ZOIDFS protocol.
The 8-byte PVFS2 handle can be incorporated in the 32-byte
ZOIDFS handle, resulting in a one-to-one mapping between
the ZOIDFS and PVFS2 API.

Two issues complicate implementing the ZOIDFS API on
top of a POSIX file system. First, since the ZOIDFS API
does not require a client to indicate when it has finished using
a file handle (i.e., a close operation), some form of garbage
collection has to be implemented to free the resources asso-
ciated with every open POSIX handle. Also, most operating

systems limit the number of files an application can have open
simultaneously.

The second issue arises when a client reuses a previously
used handle. Since the mapping between a file and its as-
sociated ZOIDFS handle is immutable, an application can
reuse a handle without first performing a lookup. When this
situation occurs, the ZOIDFS POSIX driver needs to obtain a
POSIX file handle for a given ZOIDFS handle. The problem
is that, while most file systems internally employ a handle-
like identifier to uniquely identify a file (for example, inodes),
POSIX does not require them to expose this mapping to the
user. Hence, using the POSIX interface, one can obtain a file
handle only by specifying the full filename. In other words, the
ZOIDFS POSIX driver needs to perform a “reverse lookup”
(mapping a ZOIDFS handle back onto a filename) to reopen
the file.

Reverse lookups are implemented by using a database that
stores 〈handle, filename〉 tuples. For each lookup, this database
is consulted. If the filename is already present, its handle is
returned. If not, a unique ZOIDFS handle is generated, and
the filename and handle are added to the database.

Unfortunately, this approach introduces a number of prob-
lems. For one, the size of the database is bounded by the
number of files on the file system. Each file accessed through
the ZOIDFS API will require an entry in the database, and
– since handles are persistent – entries can be removed only
when the file itself is removed. Hence, the database cannot be
kept in memory.

In addition, to assure the scalability of opening files in a
parallel application, the ZOIDFS API explicitly allows for
performing a single lookup on one process and broadcasting
the resulting handle to other processes. Hence, the filename
database needs to be shared by all processes using the ZOIDFS
API. Although the fact that handles are immutable enables
aggressive per-process caching, using a shared database does
not offer a scalable solution.

By moving the responsibility of providing the full filename
to the application, the disadvantage of maintaining a handle
database can be avoided. A new error code, ESTALE, was
added to the ZOIDFS API. If the ZOIDFS layer needs to
obtain the filename associated with a ZOIDFS handle and
is unable to do so (for example, because the underlying file
system does not support it), it will return ESTALE. This
indicates to the user application that it needs to perform
a lookup operation on the file, re-establishing the 〈handle,
filename〉 mapping.

Our current implementation of the POSIX driver for
ZOIDFS uses a least-recently-used (LRU) policy to limit the
number of concurrent POSIX file handles. In addition, the
driver can be configured to use a local, global or memory-
only database to keep track of ZOIDFS handles.

V. EXPERIMENTS

In this section we evaluate the performance of the I/O
forwarding framework (IOFSL). We present results from meta-
data microbenchmarks, I/O benchmarks, and an application.

5

 0

 0.5

 1

 1.5

 2

 2.5

create mkdir remove

La
te

nc
y

(m
s)

IOFSL
PVFS2

 0

 0.2

 0.4

 0.6

 0.8

 1

setattr getattr lookup

La
te

nc
y

(m
s)

IOFSL
PVFS2

Fig. 5: Metadata operations latency; left: create, mkdir, remove; right: setattr, getattr, lookup.

We have compared the IOFSL framework with the PVFS2
parallel file system. It is important to note the functional differ-
ences between IOFSL, which is an I/O forwarding framework,
and PVFS2, which is a parallel file system. A parallel file
system performs only a subset of the operations of an I/O for-
warding framework. IOFSL encodes the function parameters at
the compute nodes, sends the encoded parameters to the I/O
node, decodes the function parameters at the I/O node, and
then hands off the I/O operations to the file system. As such,
in small-scale testing environments, a parallel file system will
always perform better than IOFSL. The potential benefits of
I/O forwarding are realized primarily in large-scale, massively
parallel computing environments where parallel file systems
do not scale. However, benchmarking the I/O forwarding
framework against a parallel file system enables us to quantify
the overhead associated with forwarding I/O system calls from
the compute nodes to the I/O node.

The experiments were conducted on a Linux cluster. Each
cluster node consists of dual AMD Opteron 250 processors,
2 GB of RAM, an onboard Tigon 3 Gigabit Ethernet NIC,
and a 80 GB SATA disk. The nodes are connected via a
SMC 8648T 48-port switch. The testbed consisted of a single
PVFS2 server running a development version of pvfs-2.8.1, an
I/O forwarding server, and compute node clients. We bypass
the libsysio layer to access the PVFS2 file system directly,
by using a PVFS2 driver for the ZOIDFS API. We hope to
incorporate the libsysio layer in the IOFSL stack in the future.

A. Latency Microbenchmarks

The first set of experiments measures the latency of some
common metadata operations. Figure 5 shows the time taken
to create and remove files, create directories, perform file
lookups, and set and retrieve file attributes.

The IOFSL metadata latency is 0.2 ms–0.3 ms more than
that of PVFS2 for almost all metadata operations. This rep-
resents the fixed cost associated with encoding the function
parameters at the compute node, network communication
overhead, and decoding the parameters at the I/O node. It
takes only about 0.30 µs to encode and decode a typical
ZOIDFS data structure (zoidfs_attr_t). Thus, most of the
overhead associated with I/O forwarding is a result of the

communication costs between the compute and the I/O nodes.
While this fixed cost is barely noticeable when we create and
remove files and directories, it has a significant impact on
operations with low latencies, such as file lookups and setting
and retrieving of file attributes.

B. ROMIO perf
The ROMIO perf benchmark is a MPI-IO application that

measures the I/O bandwidth of file systems. Each process
writes a data array to a fixed location in a shared file using non-
collective I/O and individual file pointers. The data is then read
back to calculate the aggregate I/O bandwidth. ROMIO perf
reports two sets of I/O bandwidth results: with and without
data being flushed to the disk.

Figure 6 shows the aggregate I/O bandwidth of IOFSL and
PVFS2 as a function of the number of clients. The read and
write curves plateau almost immediately, signifying that only
a few clients are needed to saturate the network. The IOFSL
I/O bandwidth is lower than that of PVFS2 because of the
costs associated with encoding and decoding the function pa-
rameters and communication between the compute nodes and
I/O nodes. The write bandwidth with flushing enabled reflects
the limit of the single SATA disk used in this experiment.

To study the benchmark without the limitations imposed
by the disk throughput, we ran the experiment again after
mounting the PVFS2 file system on the ramdisk. Figure 7
shows the new aggregate I/O bandwidth results. While the perf
I/O bandwidth is still limited by the network, flushing the data
to the disk no longer adversely affects the write bandwidth.

C. NAS BTIO
The BT benchmark is part of the NAS Parallel Benchmarks

suite of applications. It solves systems of block-tridiagonal
equations in parallel. BTIO [22] extends the BT benchmark
by adding support for periodic solution checkpointing using
noncontiguous MPI-IO calls. We used the full version of
BTIO, which uses collective I/O to generate large, regular I/O
requests. BTIO requires that the number of clients be squares
of integers. The Class C version of the benchmark is data-
intensive, reading and writing almost 7 GB of data.

Figure 8 measures the BTIO Class C I/O bandwidth as a
function of the number of clients. The BTIO write bandwidth

6

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2 4 6 8 10 12 14 16

A
gg

re
ga

te
 I/

O
 B

an
dw

id
th

 (M
B

/s
)

Number of Clients

Write
Read
Write+Flush

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2 4 6 8 10 12 14 16

A
gg

re
ga

te
 I/

O
 B

an
dw

id
th

 (M
B

/s
)

Number of Clients

Write
Read
Write+Flush

Fig. 6: ROMIO perf; left: IOFSL; right: PVFS2.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2 4 6 8 10 12 14 16

A
gg

re
ga

te
 I/

O
 B

an
dw

id
th

 (M
B

/s
)

Number of Clients

Write
Read
Write+Flush

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2 4 6 8 10 12 14 16

A
gg

re
ga

te
 I/

O
 B

an
dw

id
th

 (M
B

/s
)

Number of Clients

Write
Read
Write+Flush

Fig. 7: ROMIO perf; left: IOFSL; right: PVFS2. The file system is mounted on a ramdisk.

plateaus at about 20 MBps for both IOFSL and PVFS2. This
is primarily a limitation of the disk bandwidth of the single
SATA disk used in all the experiments. The read bandwidth
plateaus at about 40 MBps for PVFS2 and at about 30 MBps
for IOFSL because of the limited available network bandwidth.
The difference between the PVFS2 and IOFSL read throughput
can be attributed to the additional store-and-forward latency
associated with moving the data from the compute nodes to
the I/O node in the case of IOFSL.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

A
gg

re
ga

te
 I/

O
 B

an
dw

id
th

 (M
B

/s
)

Number of Clients

IOFSL Write
IOFSL Read
PVFS2 Write
PVFS2 Read

Fig. 8: BTIO Class C I/O bandwidth.

D. Scalable Synthetic Compact Application

Scalable Synthetic Compact Application (SSCA) [23] is a
set of high-performance computing benchmarks that model
scientific applications such as bioinformatics optimal pattern
matching, graph analysis, SAR sensor processing, and knowl-
edge formation. We used the I/O-only version of the SSCA-3
code for these experiments.

We made two modifications to the SSCA-3 code. First,
we replaced the POSIX file I/O system calls with MPI-
IO. This enables us to measure the PVFS2 I/O performance
without the overhead associated with tunneling I/O requests
through the PVFS2 kernel module. The second modification
involved removing a behavior in the SSCA-3 code wherein the
application would break the I/O operations into 4-byte chunks;
that is, while the application kernel generates large read and
write requests, a subroutine breaks the requests into smaller
chunks.

Figure 9 shows the execution time of the SSCA-3 applica-
tion for the three predefined test runs: test0, test1, and test7GB.
The I/O and metadata footprint of the application progressively
increases as we move from test0 to test7GB. SSCA-3 test7GB
creates about 100,000 files and reads and writes almost 7 GB
of data.

The SSCA-3 execution time for IOFSL and PVFS2 is
comparable for the test0 and test1 runs because of the small
metadata and I/O footprints of these tests. For test7GB,

7

the PVFS2 execution time is almost 20% less than that of
IOFSL. This overhead is predominantly due to the time spent
in encoding and decoding the function parameters, and the
additional store-and-forward latency associated with moving
file data from the compute nodes to the I/O node.

 0

 20

 40

 60

 80

 100

 120

test0 test1 test7GB

E
xe

cu
tio

n
Ti

m
e

(m
in

ut
es

)

IOFSL
PVFS2

Fig. 9: SSCA3-IO execution time.

VI. RELATED WORK

Remote Procedure Call (RPC) is a communication mecha-
nism that enables applications to execute the called procedure
on a different host machine [24]. RPCs encode the function
parameters that are then passed over the network to a remote
server. The remote server executes the function call on behalf
of the client and sends the results back to the client. I/O
forwarding is essentially a specialized form of RPC where
the I/O function calls are sent to the I/O node for execution.

The Computational Plant (Cplant) [25] machine at Sandia
National Laboratories introduced the concept of I/O forward-
ing in HPC systems. The Cplant compute nodes forward the
I/O requests to a parallel job launcher called yod, which then
performs I/O on behalf of the compute nodes. The IBM Blue
Gene series of supercomputers use I/O forwarding to ship I/O
operations from compute nodes to dedicated I/O nodes [9].
The Blue Gene compute nodes and I/O nodes are organized
into multiple processing sets (psets). Each pset consists of
a single I/O node and a fixed number of compute nodes.
I/O operations from the compute nodes are shipped to the
corresponding I/O node over a collective network. A dedicated
console daemon running on the I/O node performs I/O on
behalf of the compute nodes.

A related research project at Argonne National Laboratory
seeks to mitigate some of the design limitations of the Blue
Gene I/O forwarding framework [10]. ZOID is an open,
scalable, and flexible I/O forwarding architecture for the IBM
Blue Gene/P system. It defines a new I/O forwarding protocol
for shipping I/O operations from compute nodes to I/O nodes.
Section IV-A describes the ZOIDFS protocol in detail. The
ZOID I/O forwarding architecture is tightly-coupled to the
IBM tree network. It was designed for the Blue Gene series
of supercomputers and is not portable to other HPC systems
such as the Cray XT5 or Linux clusters.

VII. CONCLUSIONS

The performance mismatch between the computing and I/O
components of the current generation of HPC systems has
made I/O the critical bottleneck for data-intensive scientific
applications. I/O forwarding attempts to bridge this increasing
performance gap by regulating the file system I/O traffic. In
this paper, we present an open, scalable, high-performance
I/O forwarding framework capable of running on massively
parallel HPC systems such as the IBM BG/P, Cray XT5,
and Linux clusters. We document the performance benefits
of I/O forwarding and quantify the overhead associated with
introducing another layer in the I/O stack.

The I/O forwarding layer provides a platform for optimizing
the file system I/O traffic. We plan to leverage the knowledge
of global I/O patterns to implement I/O request aggregation,
pipelining, and data and metadata caching. We are also work-
ing on a capability-based security model for the ZOIDFS I/O
forwarding protocol.

REFERENCES

[1] “Argonne Leadership Computing Facility,” http://www.alcf.anl.gov.
[2] “Roadrunner,” http://www.lanl.gov/roadrunner.
[3] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur, “PVFS: A

parallel file system for Linux clusters,” in Proceedings of the 4th
Annual Linux Showcase and Conference, 2000, pp. 317–327.

[4] F. Schmuck and R. Haskin, “Gpfs: A shared-disk file system for large
computing clusters,” in FAST ’02: Proceedings of the 1st USENIX
Conference on File and Storage Technologies. Berkeley, CA:
USENIX Association, 2002.

[5] Cluster File Systems, Inc., “Lustre: a scalable high-performance file
system,” Cluster File Systems, Tech. Rep., Nov. 2002,
http://www.lustre.org/docs/whitepaper.pdf.

[6] D. Nagle, D. Serenyi, and A. Matthews, “The Panasas ActiveScale
storage cluster—delivering scalable high bandwidth storage,” in
Proceedings of the ACM/IEEE SC2004 Conference (SC’04),
Pittsburgh, PA, Nov. 2004.

[7] Argonne National Laboratory, “ROMIO: A High-Performance,
Portable MPI-IO Implementation,” http://www.mcs.anl.gov/romio.

[8] “Parallel-NetCDF,” http://www.mcs.anl.gov/parallel-netcdf.
[9] H. Yu, R. K. Sahoo, C. Howson, G. Almasi, J. G. Castanos, M. Gupta,

J. E. Moreira, J. J. Parker, T. E. Engelsiepen, R. Ross, R. Thakur,
R. Latham, and W. D. Gropp, “High performance file I/O for the
bluegene/l supercomputer,” in Proceedings of the 12th International
Symposium on High-Performance Computer Architecture (HPCA-12),
February 2006.

[10] K. Iskra, J. W. Romein, K. Yoshii, and P. Beckman, “Zoid:
I/O-forwarding infrastructure for petascale architectures,” in PPoPP
’08: Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. New York: ACM, 2008, pp.
153–162.

[11] P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan, “Operating system
issues for petascale systems,” SIGOPS Oper. Syst. Rev., vol. 40, no. 2,
pp. 29–33, 2006.

[12] P. Beckman, K. Iskra, K. Yoshii, S. Coghlan, and A. Nataraj,
“Benchmarking the effects of operating system interference on
extreme-scale parallel machines,” Cluster Computing, vol. 11, no. 1,
pp. 3–16, 2008.

[13] IBM, “Overview of the IBM Blue Gene/P project,” IBM Journal of
Research and Development, vol. 52, no. 1/2, pp. 199–220, 2008.

[14] “FUSE: Filesystem in userspace,” http://fuse.sourceforge.net/.
[15] “SYSIO,” http://sourceforge.net/projects/libsysio.
[16] M. Eisler, “XDR: External data representation standard,”

http://www.ietf.org/rfc/rfc4506.txt.
[17] P. H. Carns, W. B. Ligon III, R. Ross, and P. Wyckoff, “BMI: a

network abstraction layer for parallel I/O,” in Proceedings of
IPDPS’05, CAC workshop, Denver, CO, Apr. 2005.

8

[18] InfiniBand Architecture Specification,
http://www.infinibandta.org/specs/, InfiniBand Trade Association, Oct.
2004.

[19] R. Thakur, W. Gropp, and E. Lusk, “On implementing mpi-io portably
and with high performance,” in Proceedings of the Sixth Workshop on
I/O in Parallel and Distributed Systems. New York, NY, USA: ACM
Press, 1999, pp. 23–32.

[20] R. Brightwell, B. Lawry, A. B. MacCabe, and R. Riesen, “Portals 3.0:
Protocol building blocks for low overhead communication,” in
Proceedings of the 16th International Parallel and Distributed
Processing Symposium, 2002.

[21] MPI Forum, “MPI-2: Extensions to the Message-Passing Interface,”
http://www.mpi-forum.org/docs/docs.html, 1997.

[22] P. Wong and R. der Wijngaart, “NAS parallel benchmarks I/O version
2.4,” NASA Ames Research Center, Moffet Field, CA, Tech. Rep.
NAS-03-002, Jan. 2003.

[23] HPCS, “Scalable Synthetic Compact Application,”
http://www.highproductivity.org/SSCABmks.htm.

[24] R. Srinivasan, “RPC: Remote procedure call protocol specification
version 2,” http://www.ietf.org/rfc/rfc1831.txt.

[25] Sandia National Laboratories, “Computational plant,”
http://www.cs.sandia.gov/cplant.

9

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory
(“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No.
DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the Government.

10

